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DIMENSIONS OF DIVISION RINGS 

BY 

J. T. STAFFORD 

A B S T R A C T  

Let k be a field. Write D(G) for the quotient division ring of the group ring kG 
of a torsion-free, polycyclic-by-finite group G, and D(g) for the quotient ring of 
the enveloping algebra of a finite-dimensional Lie algebra g over k. In this note 
we show that the Hirsch number h(G) and dimk g are invariants for the 
respective division rings, by calculating the Krull and global dimensions of 
D(G)@kD(G) and D(g)@kD(g). 

Let  D be a division ring with a central subfield k. Recently, Resco has related 

the transcendence degree of D over k, that is, the maximal transcendence 

degree of (commutative) subfields of D, to the dimension of D @k k(x l , . .  ", x,)  

(see [9] for the precise results). Here  the dimension can be taken to be either 

Krull dimension in the sense of Rentschler-Gabrie l  or global dimension. This 

suggests that it may be profitable to study other overrings of D in order  to 

understand the internal structure of D itself. We make one such approach in this 

note by determining, for various division rings D, the dimension of D ~ D. 

More precisely, let g be a finite-dimensional Lie algebra over  a field k, with 

enveloping algebra U(g), and G a torsion-free, polycyclic-by-finite group. Write 

D(g)  and D ( G )  for the quotient division rings of U(g) and kG, respectively. The 

main result of this note is the following: 

THEOREM. (i) Kdim D (G)op @k D (G)  = gldim D (G)~ @k D (G) = h (G), the 

Hirsch number of G; 
(ii) gldim D (g)~ @ D (g) -- dimk g. Furthermore, Kdim D (g)Op @ D (g) = dim g, 

provided that either (a) g is solvable or (b) k is an uncountable field of 

characteristic zero and g is algebraic. 

We conjecture that K d i m D ( g ) ~  dim g will hold in all cases. The 

problem in the general case really stems from the fact that Kdim U ( g ) <  dim g 

will frequently hold. 
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Note that the rings D ( G )  and D(g) can be thought of as division rings of 

rational functions in h(G)  (or dimg) non-commuting variables over k. The 

above theorem suggests, at least when D "~ @ D is Noetherian, that dim D ~ @ D 

may give a better indication of the "size" of D than Resco's transcendence 

degree. 

I would like to thank A. H, Schofield for stimulating my interest in this 

problem and R. L. Snider for several useful conversations. After this paper was 

submitted, Rosenberg's paper [10] appeared and has some overlap with the 

present paper. In particular, Rosenberg proves that gldim D @ D = 2n, when D 

is the division ring of the n-th Weyl algebra. 

1. On the dimension of D"P@D 

We begin by giving various notation that will be used throughout this note. k 

will always be a field, g a finite-dimensional Lie algebra over k and G a poly- 

cyclic-by-finite group. Note that kG and the enveloping algebra U(g) are 

Noetherian domains and so, by Goldie's Theorem, have quotient division rings. 

These will be denoted by D ( G )  and D(g), respectively. Given a ring S, the 

global dimension of S will be written gldim S and the Krull dimension of S in the 

sense of Rentschler and Gabriel will be written Kdim S. Since we will frequently 

not need to distinguish between them, Dim S will stand for either gldim S or 

Kdim S. Similarly, D will denote either D ( G )  or D(g) and R will denote either 

kG or U(g). Finally, @ will always mean the tensor product over k. 

The purpose of this section is to determine Dim D ~ @ D. Note that, for each 

ring S that we consider, S ~ ~ S and so we could equally well write D @ D for 

D~ D. We work with the latter as it seems to be slightly more natural. 

We begin by producing an easy upper bound for Dim D~ D. 

LEMMA 1.1. Let n = h (G) ,  the Hirsch number of G, when R = kG and let 

n = dimk g, when R = U(g). Then Dim D op @ D _-< Dim D ~ @ R ~ n. 

PROOF. The initial inequality of the lemma follows from the fact that 

D ~  is isomorphic to the localisation of D ~  at the set cs = 

{1 @ d : d / 0  E R}. In order to prove the second inequality, we need to consider 

the various cases separately. 

If R = U(g), then D~ R has an associated graded ring isomorphic to the 

polynomial ring D[xl, ."  ", x,]. Thus Kdim D~ R _-< n follows from [7]. By [4, 

proposition 2(iii)] and [1, theorem 8.2, p. 283], and in the notation of the latter, 

gldim D op @ R =< gldim D op + dim R = n. 
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Suppose next that R = kG. Then D~ ~ D G ,  the group ring. Thus 
Kdim D ~  <~ n follows from [12, theorem 2]. Secondly, 

gldim D ~ @ R =< gldim D ~ + dim R = gldim kG = h (G), 

where the three inequalities come from [4, proposition 2(iii)], [1, theorem 6.2, p. 

195] and [5, theorem 3.6 and lemma 1.4], respectively. 

The inverse inequalities to those given by Lemma 1.1 require somewhat more 

work and for these we will use the following "diagonal" embeddings of R into 
D~ (~ D. 

NOTATION 1.2. Let ~ = {1 @ g - g @ 1 E  U(g) ~ @ U(g) : g E g} and /~ = 0, 

the subalgebra of R ~ R generated by g- Similarly, set 

( ~ = { g  I @ g ~ k G ~  
A 

and write /~ = kG for the subalgebra of kG~ kG generated by 0 .  Finally 

write ~ for the augmentation ideal of/~ ; so ~ is generated by the {g E ~} if/~ = O 

and by the {1 - g "g E d} i f /~  = k'~. 
The main theorem will be proved by bounding Dim D~ D from below by 

Dim/~. For this we need some more detailed information about the structure of 
D~ @ D as an /~-module. 

LEMMA 1.3. (a) /~ -------R. 

(b) Let R ' = { a @ I : a E R ~ 1 7 6  and D ' = { d @ I : d E D ~  

D~ Then, as k-algebras, R ~  = R ' . / ~  and D~ = D' . /~ .  

(c) Let {d, : i E I} be a k-basis for D ~ Then D op @ R is a free (left or right) 

I~-module, with basis {d, @ 1 : i E I}. 

PROOF. (a) We will give the proof of this part of the lemma in some detail, as 

the same argument can then be used in part (c). We begin with the group ring 
case. Certainly G ~ G and so by the universality of the group ring, this induces a 

A 
ring homomorphism from kG onto kG. If r = E{k,g, : k, E k and xg, E G} is a 
non-zero element of kG, then its image ~ = E k , ( g 2 1 @ g , )  in kG is clearly A 
non-zero. Thus kG = kG. 

Now turn to the case of Lie algebras. Again, from the universality of the 

enveloping algebra, there exists a homomorphism from U(g) onto O. However,  

it is not now advisable to explicitly calculate elements of O. Instead, regard 

elements of R~ R as polynomials in the {1 @ g : g E g} with coefficients in R' .  

Now, given a monomial v in U(g), then its image 0 in O will be some 

polynomial whose leading term is 1 @ v. So, if r e  0 E U(g), then its image f in O 

will have a non-zero leading term and so will be non-zero. 
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(b) Clearly R ' . / ~  contains 1 @ g for all g E G (respectively g E g) and the 

result follows. 
(c) By symmetry, it suffices to show that the {d, @ 1} form a basis for D~ @ R 

as a r ight/~-module.  Certainly they span the module. Thus it remains to show 

that E(d, @ 1)r, = 0 for some r, E /~  implies that each r, = 0. If R = kG, then this 

is a straightforward calculation. If R = U(g), then it follows from the same 

leading term argument that was used in part (a). 

COROLLARY 1.4. D op (~ R is faithfully flat as a (left or right) 1~ -module. Thus 

D~ D, being a localisation of D~ R, is flat as both a left and a right 

I~ -module. 

It would be interesting to know whether D ~  is faithfully flat as an 

/~-module. However, it is sufficient for our purposes to know that 

a(V~ (~ D)~ D~ D, which is easy to ascertain. Observe that D is naturally a 

right D~ under the action d ( a @ b ) = a d b ,  for d E D  and 
a Q b E D~ D. Write aug(D~ D)  for the right annihilator in D~ D of 

the element 1 E D. Equivalently, aug(D op Q D)  = {El, ~ g, ~ D op Q D : E f,g, = 

0}. The next lemma is now immediate. 

LEMMA 1.5. With the above notation, ~ ( D ~ 1 7 6  

D ~  

This result illustrates why we prefer to work with D ~  rather than 

D ~) D. For, given an arbitrary division ring E, it is not clear whether E can be 

made into a right E @ E-module.  The following strengthening of Lemma 1.5 

will not be needed subsequently, but may be of some independent interest. 

COROLLARY 1.6. a ( D ~  aug(D~ 

PROOF. We first show that, if a, b E R, then a @ b ==- ab @ 1 

rood h(R~ So, suppose that R = U(g) and that b is a monomial; say, 

b = gig2"'" gm for some g, E g. As each 1 @ gi - g, @ 1 E ~, we have 

a @ b = - a @ b + ( g , @ l - l @ g l ) ( a @ g 2 . . . g m )  mod a (R~  

- agl @ g2"'" gm 

- - " "  -- ag~g2""gm @1 mod a(R~ R). 

Thus, for any b E U(g), one obtains a @ b - ab @ 1 mod ~(R op @ R ). A similar 

proof works when R = kG. 
Now suppose that h E aug(D~ By multiplying h by an appropriate 

element of c~ ={a  @ b  : a , b ~ O E D } ,  we may assume that h ~ R ~  By 
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replacing h by h - x  for some x E ~(R~ R)  and using the result of the last 

paragraph, we may suppose that h = h ' @ l  for some h ' C R  ~ Clearly 

h'  Q 1 E aug(D ~ (~ D)  if and only if h '  = 0. This implies that h ~ fi(D ~ Q D) ,  

as required. 

The computation of Dim D~ (~ D now follows by standard methods from the 

literature, although the different cases will require slightly different techniques. 

Write p d s M  and w-pdsM for the projective dimension and weak homological 

dimension of an S-module M. 

PROPOSITION 1.7. G l d i m D ( G ) ~  = h ( G ) ,  the Hirsch number of G 

and gldim D (gyp @ D (g) = dimk g. 

PROOF. Let  n = h ( G ) ,  respectively n =dimk g. By Lemma 1.1, 

gldim D ~  <= n. Set N = /~ /&  Then pd~ N = gldim/~ = n, by [1, theorem 

8.2, p. 283] if R = U(g) and by [5, theorem 3.6] if R = kG. Since D ~ @ D is a 

f la t /~-module  (Corollary 1.4), 

M = N ~  ( D ~ 1 7 6 1 7 6  

Further,  M ~  0, by Lemma 1.5. Thus the natural homomorphism N ~ M given 

by n --~ n @ 1 is non-zero which, as N is simple, implies that it is injective. So 

there exists a short exact sequence of /~-modules 

O----~ N---~ M--~ T--~ O. 

Since w-pd N = n = gldim/~ _--- w-pd T ([11, theorem 9.22, p. 241]), this implies 

that w-pdRM = n. So, by [11, ex. 3.38, p. 94 and theorem 9.13, p. 239], 

w-pdDop| ~ w-pdRM > n, 

as required. 

In order  to obtain information about the Krull dimension of D~ @ D, we will 

use Resco's notion of an r-sequence. A set of elements {a,, .  �9 a,} of a ring A 

will form an r-sequence provided that (i) E a,A ~ A ,  (ii) au (E~'-' a,A ) C_ E7 ~ a,A 

for each u > 1, (iii) a, is right regular and (iv) if u > 1 and auf E E7 Ja,A, then 

f ~ E~-' a,A. The basic properties of r-sequences may be found in [8]. 

PROPOSITION 1.8. K d i m D ( G ) ~  D ( G ) =  h (G) .  

PROOF. Once again, by Lemma 1.1 it suffices to show that Kdim D ~ @ D ->_ 

n = h (G) .  There exists a subnormal chain of subgroups 

Ho = (1) <~ H,  <a . . . <a H ,  = H <I G, 
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such that each H,/H,_I  = (h, + Hi_l) is infinite cyclic and CJ/H is finite. Given 

u > 1, note that k H , / X r - l ( 1  - h , ) kH ,  ~ k ( H , / H , _ I )  is a domain. It follows easily 

from this observation that { 1 - h ,  :1 _-<iN n} is an r-sequence in kH.  Since 
A 

D ~ R is a free kG-module  (Lemma 1.3) and k ~  is a free kH-module ,  it 

foltows from [8, proposition 1.8(i)] that { l - h , }  forms an r-sequence in 

D~  But D ~  is a localisation of D ~  and, by Lemma 1.5, 

E ( 1 - h , ) D ~ 1 7 6  So, by [8, proposition 1.3], { l - h , }  forms an 

r-sequence in D ~  Finally, by [8, proposition 1.4], this implies that 

Kdim D ~ @ D -_> n, as required. 

PROPOSITION 1.9. Let  g be a f in i te-dimensional  Lie algebra over a .field k, and  

suppose that either 

(i) g is solvable, or 

(ii) k is an uncountable field of  characteristic zero and g is algebraic. 

Then Kdim D(g) ~ @ D(g) = dimk g. 

PROOF. As usual, we need only show that K d i m D ~  > n = dim g. 

Suppose that g is a solvable Lie algebra. Then there exists a chain of subalgebras 

O = l)o C th = kx  , C . . . C t). = I). , + kx .  =g ,  

such that, for 0_-< i < n - 1, D, is a Lie ideal of D,+I of codimension one. It is 

routine to show that {Xl," �9 x,} form an r-sequence of length n in U(g). As in 

the proof of Proposition 1.8, this quickly leads to Kdim D ~ @ D = n. 

Let  U2 be the two-dimensional, non-abelian, solvable Lie algebra and I the 

one-dimensional Lie algebra. Let  ~) be the Lie algebra formed as the direct sum 

of u copies of U2 and v copies of L Then, by the result of the last paragraph, 

Kdim D(I~) ~ @ D(D) = dim D = 2u + v. But D(~)) is isomorphic to the quotient 

division ring of the polynomial extension A..~ = A,  [zl," �9 -, zo] of the u-th Weyl 

algebra Au. In particular, Kdim D(g)~ D ( g ) =  dim g will hold for any Lie 

algebra g for which the GeI'fand-KiriIlov conjecture holds. 

If g is an algebraic Lie algebra over an uncountable field k of characteristic 

zero, then [6, theorem 4.1(ii)] is close enough to a solution of this conjecture to 

complete our proof. For, let K be the centre of D(g), with algebraic closure F, 

and set u = �89 g - -  transcendence degree(K)),  which is an integer. Given an 

Ore domain A, write D ( A ) f o r  the quotient division ring of A. Then [6] shows 

that D ( D ( g ) @ K F )  embeds in D ( A , ( F ) )  in such a way that D ( A u  (F))  is a 

finite-dimensional vector space over D ( D ( g ) @ K F ) .  Since D(g) is a finitely 

generated division algebra over K, it follows that there exists a finite field 

extension L of K such that D = D(g)  embeds in Dt = D ( A .  (L)) ,  again with 
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finite index. In particular, D'~P (~)D, is a finitely generated D ~ @ D-module.  So, 

using the comments of the last paragraph, 

Kdim D ~ (~ D -> Kdimoop| (D~ p @ D1) -> Kdim D? ~ @ D, = dim g, 

as required. 

The Theorem of the introduction is just the combination of the last three 

propositions. 

We conjecture that Proposition 1.9 will hold for any finite-dimensional Lie 

algebra g. Ironically, the problem really stems from a case we have already 

solved. For, let g be a (non-abelian) semi-simple Lie algebra over a field k of 

characteristic zero. Then, by [13], Kdim U(g )<  dimk g. So, it is not clear how 

one should in general construct one's r-sequences. Observe, however, that if 

D = D ( g ) ,  then one can construct the Lie algebra g @ D  over D. Since 

U(g @ D ) ~  U(g)@ D, it follows from Proposition 1.9 and Lemma 1.1 that 

Kdim U ( g @ D ) =  Kdim U ( g ) @ O  = dimo g @ D .  

In other words, the problems of calculating Kdim U(g) for a semi-simple Lie 

algebra g disappear if one defines the Lie algebra over an appropriate division 
ring. 

One can ask what is the dimension of the tensor product @'~ D of t _-> 3 copies 

of D = D ( G )  or of D = D(g). This problem seems to be more difficult and to 

depend on more than one invariant of the group ring or enveloping algebra. For 

the quotient division ring D,.o of the generalised Weyl algebra A,.~ (and 

therefore for D (g) when g is algebraic) it is possible to determine the answer and 
we announce: 

P~oPosmoy 1.10. Let k be a field of characteristic zero. Then, for any t >-_ 3 
and any integers u and v, 

Kdim @[ D ~  = gldim @'1D.,o = tu + (t - 1)v. 

We will not prove this result. However,  we will observe that, as @ D.,~ is a 

localisation of A,,.~,_I)o(Do.,), certainly dim@Du.v _<-tu + ( t - 1 ) v .  The other 

inequality is obtained by constructing a suitable r-sequence. 

We end with an amusing example. 

EXAMPLE 1.11. There exist division rings D and E such that, for either Krull or 

global dimension, 

D i m D @ k E = l  < D i m D @ D = 2  < D i m E @ E = 3 .  

Further, each ring is Noetherian. 
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PROOF. Take D = Dl,o, the quotient division ring of the first Weyl algebra 

over a field k of characteristic zero and E the field of rational functions in 3 

variables over  k. The result is now obvious. 
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